distler
Administator
20 posts
Here, we’ll build the first stage of a house of cards. The two cards rest on a table with coefficient of static friction, μ s , as in the figure below.
Layer 1
θ
\theta
μ
s
\mu_s
μ
s
\mu_s
\begin{svg}
<svg width="500" height="211" xmlns="http://www.w3.org/2000/svg" xmlns:se="http://svg-edit.googlecode.com" se:nonce="96726">
<g>
<title>Layer 1</title>
<line fill="none" stroke="#000000" stroke-width="2" x1="140" y1="191" x2="250" y2="1" id="svg_96726_1"/>
<line fill="none" stroke="#000000" stroke-width="2" x1="360" y1="191" x2="250" y2="1" id="svg_96726_2"/>
<rect fill="#7f3f00" stroke-width="0" x="0" y="191" width="500" height="20" id="svg_96726_3"/>
<path fill="none" stroke="#000000" stroke-width="2" stroke-dasharray="2,2" d="m162.572998,152.177002c10.891998,5.891998 22.677002,20.391998 22.177002,39.322998" id="svg_96726_4"/>
<foreignObject x="188.75" y="151.75" id="svg_96726_6" font-size="16" width="12" height="20">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<semantics>
<mrow>
<mi>θ</mi>
</mrow>
<annotation encoding="application/x-tex">\theta</annotation>
</semantics>
</math>
</foreignObject>
<line stroke-dasharray="2,2" marker-end="url(#se_marker_end_svg_96726_5)" id="svg_96726_5" y2="185" x2="130" y1="164" x1="110" stroke-width="2" stroke="#000000" fill="none"/>
<foreignObject height="24" width="20" font-size="16" id="svg_96726_7" y="140" x="95">
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow>
<msub>
<mi>μ</mi>
<mi>s</mi>
</msub>
</mrow>
<annotation encoding="application/x-tex">\mu_s</annotation>
</semantics>
</math>
</foreignObject>
<line id="svg_96726_8" stroke-dasharray="2,2" marker-end="url(#se_marker_end_svg_96726_8)" y2="185" x2="370" y1="165" x1="390" stroke-width="2" stroke="#000000" fill="none"/>
<foreignObject id="svg_96726_9" height="24" width="20" font-size="16" y="140" x="390">
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow>
<msub>
<mi>μ</mi>
<mi>s</mi>
</msub>
</mrow>
<annotation encoding="application/x-tex">\mu_s</annotation>
</semantics>
</math>
</foreignObject>
</g>
<defs>
<marker refY="50" refX="50" markerHeight="5" markerWidth="5" viewBox="0 0 100 100" se_type="rightarrow" orient="auto" markerUnits="strokeWidth" id="se_marker_end_svg_96726_5">
<path stroke-width="10" stroke="#000000" fill="#000000" d="m100,50l-100,40l30,-40l-30,-40z"/>
</marker>
<marker refY="50" refX="50" markerHeight="5" markerWidth="5" viewBox="0 0 100 100" se_type="rightarrow" orient="auto" markerUnits="strokeWidth" id="se_marker_end_svg_96726_8">
<path stroke-width="10" stroke="#000000" fill="#000000" d="m100,50l-100,40l30,-40l-30,-40z"/>
</marker>
</defs>
</svg>
\end{svg}
The cards don’t fall, provided the total force and total torque on each card vanishes. By symmetry, we can examine the forces and torque on just one of the cards.
Layer 1
F
N
F_N
F
f
F_f
m
g
m g
N
c
N_c
\begin{svg}
<svg width="137" height="241" xmlns="http://www.w3.org/2000/svg" xmlns:se="http://svg-edit.googlecode.com" se:nonce="54498">
<g>
<title>Layer 1</title>
<line fill="none" stroke="#000000" stroke-width="3" x1="25" y1="215" x2="135" y2="25" id="svg_54498_1"/>
<line fill="none" stroke="#000000" stroke-width="2" x1="135" y1="24" x2="95" y2="24" id="svg_54498_2" marker-end="url(#se_marker_end_svg_54498_2)"/>
<line fill="none" stroke="#000000" stroke-width="2" x1="25" y1="215" x2="55" y2="215" marker-end="url(#se_marker_end_svg_54498_3)" id="svg_54498_3"/>
<line fill="none" stroke="#000000" stroke-width="2" x1="80" y1="120" x2="80" y2="160" marker-end="url(#se_marker_end_svg_54498_4)" id="svg_54498_4"/>
<line fill="none" stroke="#000000" stroke-width="2" x1="25" y1="215" x2="25" y2="175" marker-end="url(#se_marker_end_svg_54498_5)" id="svg_54498_5"/>
<foreignObject height="20" width="24" font-size="16" id="svg_54498_10" y="183" x="0">
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow>
<msub>
<mi>F</mi>
<mi>N</mi>
</msub>
</mrow>
<annotation encoding="application/x-tex">F_N</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject id="svg_54498_11" height="24" width="24" font-size="16" y="217" x="27">
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow>
<msub>
<mi>F</mi>
<mi>f</mi>
</msub>
</mrow>
<annotation encoding="application/x-tex">F_f</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject id="svg_54498_19" height="22" width="24" font-size="16" y="130" x="81">
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow>
<mi>m</mi>
<mi>g</mi>
</mrow>
<annotation encoding="application/x-tex">m g</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject id="svg_54498_27" height="22" width="24" font-size="16" y="0" x="106">
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow>
<msub>
<mi>N</mi>
<mi>c</mi>
</msub>
</mrow>
<annotation encoding="application/x-tex">N_c</annotation>
</semantics>
</math>
</foreignObject>
</g>
<defs>
<marker id="se_marker_end_svg_54498_2" markerUnits="strokeWidth" orient="auto" viewBox="0 0 100 100" markerWidth="5" markerHeight="5" refX="50" refY="50">
<path id="svg_54498_6" d="m100,50l-100,40l30,-40l-30,-40l100,40z" fill="#000000" stroke="#000000" stroke-width="10"/>
</marker>
<marker id="se_marker_end_svg_54498_3" markerUnits="strokeWidth" orient="auto" viewBox="0 0 100 100" markerWidth="5" markerHeight="5" refX="50" refY="50">
<path id="svg_54498_7" d="m100,50l-100,40l30,-40l-30,-40l100,40z" fill="#000000" stroke="#000000" stroke-width="10"/>
</marker>
<marker id="se_marker_end_svg_54498_4" markerUnits="strokeWidth" orient="auto" viewBox="0 0 100 100" markerWidth="5" markerHeight="5" refX="50" refY="50">
<path id="svg_54498_8" d="m100,50l-100,40l30,-40l-30,-40l100,40z" fill="#000000" stroke="#000000" stroke-width="10"/>
</marker>
<marker id="se_marker_end_svg_54498_5" markerUnits="strokeWidth" orient="auto" viewBox="0 0 100 100" markerWidth="5" markerHeight="5" refX="50" refY="50">
<path id="svg_54498_9" d="m100,50l-100,40l30,-40l-30,-40l100,40z" fill="#000000" stroke="#000000" stroke-width="10"/>
</marker>
</defs>
</svg>
\end{svg}
Let’s take the point of contact with the floor as the axis about-which to evaluate the torque. Then only two of the four forces (gravity and the force due to the other card, N c ) contribute to the torque. If we call the length of the card, L , the displacement at which gravity acts is L / 2 , and the perpendicular component of the gravitational force is − m g sin θ . The force from the other card acts at a displacement L , and the perpendicular component is + N c cos θ . So the total torque is
(1) τ = ( N c cos θ − 1 2 m g sin θ ) L \tau = (N_c \cos \theta -\tfrac{1}{2} m g \sin\theta ) L
The x , y components of the total force are
(2) F x = F f − N c F y = F N − m g \begin{split}
F_x &= F_f - N_c\\
F_y &= F_N - m g
\end{split}
We also must have
(3) ∣ F f ∣ ≤ μ s F N |F_f|\leq \mu_s F_N
Combining (3) with (2) , we have N c ≤ μ s m g . Making the torque vanish in (1) requires
N c = 1 2 m g tan θ N_c = \tfrac{1}{2} m g \tan\theta
So we need
1 2 m g tan θ ≤ μ s m g \tfrac{1}{2} m g \tan\theta \leq \mu_s m g
or
tan θ ≤ 2 μ s \tan\theta \leq 2 \mu_s
If we try an angle larger than that, the cards will slide.