Forums 362L

A Contour Integral

Subscribe to A Contour Integral 1 post, 1 voice

 
distler Administator 20 posts

edited 8 years ago

At some point, in Homework 3, you will encounter the integral

I=dk2π1k 2k 2+iϵ I= \int \frac{dk''}{2\pi} \frac{1}{k^2-{k''}^2+i\epsilon}

For those of you who took complex analysis, this should be easy to do, using the methods of contour integration.

If you haven’t taken complex analysis, the answer is

I=i2|k| I= -\frac{i}{2|k|}

To see how the integral is done, read on…

First, let’s rewrite

I= dk2π1(|k|k+iϵ)(|k|+k+iϵ) I = \int_{-\infty}^\infty \frac{dk''}{2\pi} \frac{1}{(|k|-k''+i\epsilon)(|k|+k'' +i\epsilon)}

The iϵi\epsilon displaces the location of the poles of the integrand off the real axis. The are located at |k|+iϵ|k| +i\epsilon and at |k|iϵ-|k|-i\epsilon. The contour can be closed either in the upper half-plane or in the lower half-plane. Closing in the upper half-plane, we pick up the pole at |k|+iϵ|k| +i\epsilon:

Layer 1 | k | + i ϵ -|k|-i\epsilon | k | i ϵ -|k|-i\epsilon \begin{svg}<svg width="402" height="250" xmlns="http://www.w3.org/2000/svg" xmlns:svg="http://www.w3.org/2000/svg" xmlns:se="http://svg-edit.googlecode.com" xmlns:math="http://www.w3.org/1998/Math/MathML" se:nonce="98953"> <g class="layer"> <title>Layer 1</title> <path id="svg_98953_2" d="m1,206c0,-110 90,-200 200,-200c110,0 200,90 200,200" stroke-width="2" stroke="#000000" fill="none" marker-mid="url(#se_marker_mid_svg_98953_2)"/> <polyline points="1,206 201,206 401,206 " stroke="#000000" stroke-width="2" fill="none" marker-mid="url(#se_marker_mid_svg_98953_1)" id="svg_98953_1"/> <circle fill="#000000" stroke="#000000" stroke-width="2" cx="101" cy="216" r="3" id="svg_98953_3"/> <circle fill="#000000" stroke="#000000" stroke-width="2" cx="301" cy="196" r="3" id="svg_98953_4"/> <foreignObject x="271" y="169" id="svg_98953_7" font-size="16" width="60" height="20"> <math display="inline" xmlns="http://www.w3.org/1998/Math/MathML"> <semantics> <mrow> <mo stretchy="false">|</mo> <mi>k</mi> <mo stretchy="false">|</mo> <mo>+</mo> <mi>i</mi> <mi>ϵ</mi> </mrow> <annotation encoding="application/x-tex">-|k|-i\epsilon</annotation> </semantics> </math> </foreignObject> <foreignObject x="61" y="227" id="svg_98953_8" font-size="16" width="80" height="20"> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"> <semantics> <mrow> <mo lspace="verythinmathspace" rspace="0em">−</mo> <mo stretchy="false">|</mo> <mi>k</mi> <mo stretchy="false">|</mo> <mo>−</mo> <mi>i</mi> <mi>ϵ</mi> </mrow> <annotation encoding="application/x-tex">-|k|-i\epsilon</annotation> </semantics> </math> </foreignObject> </g> <defs> <marker id="se_marker_mid_svg_98953_2" markerUnits="strokeWidth" orient="auto" viewBox="0 0 100 100" markerWidth="5" markerHeight="5" refX="50" refY="50"> <path id="svg_98953_5" d="m0,50l100,40l-30,-40l30,-40l-100,40z" fill="#000000" stroke="#000000" stroke-width="10"/> </marker> <marker id="se_marker_mid_svg_98953_1" markerUnits="strokeWidth" orient="auto" viewBox="0 0 100 100" markerWidth="5" markerHeight="5" refX="50" refY="50"> <path id="svg_98953_6" d="m100,50l-100,40l30,-40l-30,-40l100,40z" fill="#000000" stroke="#000000" stroke-width="10"/> </marker> </defs> </svg>\end{svg}

and we get I=i2|k|I= -\frac{i}{2|k|}. If we closed the contour in the lower half-plane, we would pick up the pole at |k|iϵ-|k|-i\epsilon. But, that contour is in the clockwise (instead of counter-clockwise) direction, the two minus-signs cancel, and we get the same result for the integral.

Forums 362L