distler
Administator
20 posts
edited 8 years ago
At some point, in Homework 3, you will encounter the integral
I = ∫ dk ″ 2 π 1 k 2 − k ″ 2 + i ϵ
I= \int \frac{dk''}{2\pi} \frac{1}{k^2-{k''}^2+i\epsilon}
For those of you who took complex analysis, this should be easy to do, using the methods of contour integration.
If you haven’t taken complex analysis, the answer is
I = − i 2 | k |
I= -\frac{i}{2|k|}
To see how the integral is done, read on…
First, let’s rewrite
I = ∫ − ∞ ∞ dk ″ 2 π 1 ( | k | − k ″ + i ϵ ) ( | k | + k ″ + i ϵ )
I = \int_{-\infty}^\infty \frac{dk''}{2\pi} \frac{1}{(|k|-k''+i\epsilon)(|k|+k'' +i\epsilon)}
The i ϵ i\epsilon displaces the location of the poles of the integrand off the real axis. The are located at | k | + i ϵ |k| +i\epsilon and at − | k | − i ϵ -|k|-i\epsilon . The contour can be closed either in the upper half-plane or in the lower half-plane. Closing in the upper half-plane, we pick up the pole at | k | + i ϵ |k| +i\epsilon :
Layer 1
|
k
|
+
i
ϵ
-|k|-i\epsilon
−
|
k
|
−
i
ϵ
-|k|-i\epsilon
\begin{svg}<svg width="402" height="250" xmlns="http://www.w3.org/2000/svg" xmlns:svg="http://www.w3.org/2000/svg" xmlns:se="http://svg-edit.googlecode.com" xmlns:math="http://www.w3.org/1998/Math/MathML" se:nonce="98953">
<g class="layer">
<title>Layer 1</title>
<path id="svg_98953_2" d="m1,206c0,-110 90,-200 200,-200c110,0 200,90 200,200" stroke-width="2" stroke="#000000" fill="none" marker-mid="url(#se_marker_mid_svg_98953_2)"/>
<polyline points="1,206 201,206 401,206 " stroke="#000000" stroke-width="2" fill="none" marker-mid="url(#se_marker_mid_svg_98953_1)" id="svg_98953_1"/>
<circle fill="#000000" stroke="#000000" stroke-width="2" cx="101" cy="216" r="3" id="svg_98953_3"/>
<circle fill="#000000" stroke="#000000" stroke-width="2" cx="301" cy="196" r="3" id="svg_98953_4"/>
<foreignObject x="271" y="169" id="svg_98953_7" font-size="16" width="60" height="20">
<math display="inline" xmlns="http://www.w3.org/1998/Math/MathML">
<semantics>
<mrow>
<mo stretchy="false">|</mo>
<mi>k</mi>
<mo stretchy="false">|</mo>
<mo>+</mo>
<mi>i</mi>
<mi>ϵ</mi>
</mrow>
<annotation encoding="application/x-tex">-|k|-i\epsilon</annotation>
</semantics>
</math>
</foreignObject>
<foreignObject x="61" y="227" id="svg_98953_8" font-size="16" width="80" height="20">
<math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
<semantics>
<mrow>
<mo lspace="verythinmathspace" rspace="0em">−</mo>
<mo stretchy="false">|</mo>
<mi>k</mi>
<mo stretchy="false">|</mo>
<mo>−</mo>
<mi>i</mi>
<mi>ϵ</mi>
</mrow>
<annotation encoding="application/x-tex">-|k|-i\epsilon</annotation>
</semantics>
</math>
</foreignObject>
</g>
<defs>
<marker id="se_marker_mid_svg_98953_2" markerUnits="strokeWidth" orient="auto" viewBox="0 0 100 100" markerWidth="5" markerHeight="5" refX="50" refY="50">
<path id="svg_98953_5" d="m0,50l100,40l-30,-40l30,-40l-100,40z" fill="#000000" stroke="#000000" stroke-width="10"/>
</marker>
<marker id="se_marker_mid_svg_98953_1" markerUnits="strokeWidth" orient="auto" viewBox="0 0 100 100" markerWidth="5" markerHeight="5" refX="50" refY="50">
<path id="svg_98953_6" d="m100,50l-100,40l30,-40l-30,-40l100,40z" fill="#000000" stroke="#000000" stroke-width="10"/>
</marker>
</defs>
</svg>\end{svg}
and we get I = − i 2 | k | I= -\frac{i}{2|k|} . If we closed the contour in the lower half-plane, we would pick up the pole at − | k | − i ϵ -|k|-i\epsilon . But, that contour is in the clockwise (instead of counter-clockwise) direction, the two minus-signs cancel, and we get the same result for the integral.