Skip to the Main Content

Note:These pages make extensive use of the latest XHTML and CSS Standards. They ought to look great in any standards-compliant modern browser. Unfortunately, they will probably look horrible in older browsers, like Netscape 4.x and IE 4.x. Moreover, many posts use MathML, which is, currently only supported in Mozilla. My best suggestion (and you will thank me when surfing an ever-increasing number of sites on the web which have been crafted to use the new standards) is to upgrade to the latest version of your browser. If that's not possible, consider moving to the Standards-compliant and open-source Mozilla browser.

May 10, 2006

Pantev on Langlands, II

Posted by Urs Schreiber

Here are notes on the second part of Tony Pantev’s lecture (\to) on Langlands duality.

Recall that we considered a smooth compact curve CC of genus g2g\geq 2 and moduli spaces of principal bundles over this curve. These have complex reductive structure group GG or LG{}^L G, which are Langlads duals.

The refined

Geometric Langlands Conjecture

says two things:

1) There exists an equivalence of the (bounded) derived category of coherent sheaves on the moduli stack of GG-local systems over CC and the (bounded) derived category of modules for derivations on the moduli space of principal bundles with structure group the Langlands dual group LG{}^L G:

(1)c:D(Coh(ℒℴ G))D(D Bun LGmod) c\;:\; D(\mathrm{Coh}(\mathcal{Lo}_G)) \overset{\simeq}{\to} D(\mathbf{D}_{\mathrm{Bun}_{{}^L G}}-\mathrm{mod})

2) cc maps structure sheaves of points to Hecke eigensheaves.

This conjecture has been checked for special cases, but it pretty intractable for the general case.

Using some physics analogy (as that worked out by Kapustin and Witten (\to)) one can however see that the structures appearing in the conjecture can in some sense naturally be regarded as deformed, or, more precisely, quantized classical structures.

The idea is to pass to the “classical limit” of the geometric Langlands conjecture by de-deforming or dequantizing, in this sense, and to see if something more tractable is obtained this way. Indeed, this limiting case of geometric Langlands can be proven. Apparently this then also goes a long way towards proving the full statement.

Before being able to state the classical limit Langlands conjecture we need to identify the right classical versions of the moduli stack ℒℴ G\mathcal{Lo}_G of GG-local structures, and the moduli space Bun G\mathrm{Bun}_G of GG-principal bundles on CC.

(As you will have noticed, there is heavy machinerey involved in all of this, and things will not become more elementary as we proceed. I try to reproduce the statements as precisely as I can, but be please aware that inevitably some of my statements may be imprecise as given.)

Ok, so first let’s de-quantize the moduli stack ℒℴ G\mathcal{Lo}_G. Recall that this consisted of pairs (V,)(V,\nabla) with VV a principal GG-bundle on CC and \nabla a holomorphic, integrable connection on VV.

We may regard such a connection as a lifting of infinitesimal symmetries of CC to infinitesimal symmetries of VV that commute with the GG-action. This is made precise by the notion of splitting of the Atiyah sequence (\to).

So the connection is a splitting

(2)A(V)T C A(V) \overset{\nabla}{\leftarrow} T_C

of

(3)0ad(V)A(V)T C0, 0 \to \mathrm{ad}(V) \to A(V) \to T_C \to 0 \,,

where A(V)A(V) is the (sheaf of sections of the) Atiyah bundle (\to).

Now, we may generalize this notion of connection as follows. A zz-connection on VV for zz \in \mathbb{C} is a map

(4):T CA(V) \nabla : T_C \rightarrow A(V)

such that

(5)T CA(V)T c T_C \overset{\nabla}{\to} A(V) \to T_c

is zz times the identity on the (sheaf of sections of the) tangen budle T CT_C of CC.

So for z=1z=1 this is a 1-connection, which is a connection in the ordinary sense.

As we had a moduli stack ℒℴ G={(V,)}\mathcal{Lo}_G = \{(V,\nabla)\} of GG-local systems before, we now get a more general moduli space where \nabla is any zz-connection. This is called

(6)Hodge G={(V, z,z)}. \mathrm{Hodge}_G = \{ (V,\nabla_z, z) \} \,.

There is an obvious projection

(7)Hodge G (V,,z) z. \array{ \mathrm{Hodge}_G &\to& \mathbb{C} \\ (V,\nabla,z) &\mapsto& z } \,.

A special case of interest of zz-connections is that where z=0z=0. In this case the image of \nabla is in the kernel of A(V)T CA(V) \to T_C, hence 0\nabla_0 is really a map into ad(V)\mathrm{ad}(V) in this case.

The sub moduli space for such 0-connections is called

(8)Higgs G 0={(V,θ)}, \mathrm{Higgs}_G^0 = \{(V,\theta)\} \,,

where θΓ(C,ad(V)Ω C 1)\theta \in \Gamma(C, \mathrm{ad}(V)\otimes \Omega^1_C) is the ad(V)\mathrm{ad}(V)-valued 1-form connection corresponding to some 0-connection on VV, and where we demand that the first Chern class of VV vanishes, c 1(V)=0c_1(V) = 0.

The ordinary local systems form a torsor for Higgs 0\mathrm{Higgs}^0. Notice that we have the following inclusions:

(9)Higgs G 0 Hodge G ℒℴ G× × 0 ×. \array{ \mathrm{Higgs}^0_G &\subset& \mathrm{Hodge}_G &\supset& \mathcal{Lo}_G\times \mathbb{C}^\times \\ \downarrow && \downarrow && \downarrow \\ 0 &\in& \mathbb{C} &\supset& \mathbb{C}^\times } \,.

With the projection

(10)Higgs G 0 Bun G 0 (V,θ) V \array{ \mathrm{Higgs}^0_G &\to& \mathrm{Bun}_G^0 \\ (V,\theta) &\mapsto& V }

the space Higgs G 0\mathrm{Higgs}^0_G becomes a vector bundle over Bun G 0\mathrm{Bun}_G^0 and ℒℴ G\mathcal{Lo}_G is an affine bundle over Higgs G 0\mathrm{Higgs}_G^0.

The conclusion of all this is that we can hence regard ℒℴ G\mathcal{Lo}_G as a deformation of Higgs G 0\mathrm{Higgs}^0_G. Moreover, it is a fact that the Higgs bundle is really just the cotangent bundle over the moduli space Bun G\mathrm{Bun}_G

(11)Higgs G 0=T *Bun G. \mathrm{Higgs}_G^0 = T^* \mathrm{Bun}_G \,.

So the classical limit of the left hand side of the geometric Langlands conjecture is obtained by replacing ℒℴ G\mathcal{Lo}_G with Higgs G 0=T *Bun G\mathrm{Higgs}_G^0 = T^* \mathrm{Bun}_G.

The right hand side is also easily dealt with. I’ll spare the details and just remark that the algebra of derivations on a space is in a very familiar way the quantization of the cotangent bundle of that space. So on the right hand side we want to replace the sheaf of modules of derivations D Bun LGmod\mathbf{D}_{\mathrm{Bun}_{{}^L G}}-\mathrm{mod} with the coherent sheaf of sections of the cotangent bundle

(12)Coh(T *Bun LG)=Coh(T *Higgs LG 0). \mathrm{Coh}(T^* \mathrm{Bun}_{{}^L G}) = \mathrm{Coh}(T^* \mathrm{Higgs}^0_{{}^L G}) \,.

With both classical limits taken this way, we can now state the

Classical Limit of the Geometric Langlands Conjecture

1) There is an equivalence cc of the derived categories of coherent sheaves of the cotangent bundle of Bun G\mathrm{Bun}_G and of Bun LG\mathrm{Bun}_{{}^L G}

(13)c:D(Coh(Higgs G 0))D(Coh(Higgs LG 0)). c : \; D(\mathrm{Coh}(\mathrm{Higgs}^0_G)) \simeq D(\mathrm{Coh}(\mathrm{Higgs}^0_{{}^L G})) \,.

2) cc sends structure sheaves of points to Hecke eigensheaves.

(Next there is a remark on Fourer-Moukai transforms which I cannot properly reproduce in detail. The message however is that the action of the Hecke operation (which defines Hecke eigensheaves) in the classical limit is nothing but a Fourier-Moukai transformation.)

After the original geometric Langlands conjecture has thus been made more tractable, it turns into an honest

Theorem: The geometric Langlands conjecture does hold in the classical limit.


The key to proving this is Hitchin’s abelianization.

Update, May 13: I realize that above I must have mixed up the moduli stacks and moduli spaces of Higgs bundles here and there.

Posted at May 10, 2006 11:30 AM UTC

TrackBack URL for this Entry:   https://golem.ph.utexas.edu/cgi-bin/MT-3.0/dxy-tb.fcgi/807

0 Comments & 5 Trackbacks

Read the post Fourier-Mukai, T-Duality and other linear 2-Maps
Weblog: The String Coffee Table
Excerpt: Examples for linear 2-maps.
Tracked: June 1, 2006 1:45 PM
Read the post Kapustin on SYM, Mirror Symmetry and Langlands, III
Weblog: The String Coffee Table
Excerpt: The third part of the lecture.
Tracked: June 17, 2006 11:31 AM
Read the post Navigating in Geometric Langlands by Analogies
Weblog: The n-Category Café
Excerpt: Some basic analogies that help navigate the geometric Langlands duality.
Tracked: December 12, 2006 9:14 PM
Read the post A Little Bit of Geometric Langlands: Relation to Integrable Systems
Weblog: The n-Category Café
Excerpt: On Hitchin integrable systems and their role in geometric Langlands duality.
Tracked: December 21, 2006 5:51 PM
Read the post Generalized Geometric Langlands is False
Weblog: The n-Category Café
Excerpt: C. Teleman on a counter example to the generalised geometric Langlands conjecture.
Tracked: June 18, 2007 11:40 AM