Skip to the Main Content

Note:These pages make extensive use of the latest XHTML and CSS Standards. They ought to look great in any standards-compliant modern browser. Unfortunately, they will probably look horrible in older browsers, like Netscape 4.x and IE 4.x. Moreover, many posts use MathML, which is, currently only supported in Mozilla. My best suggestion (and you will thank me when surfing an ever-increasing number of sites on the web which have been crafted to use the new standards) is to upgrade to the latest version of your browser. If that's not possible, consider moving to the Standards-compliant and open-source Mozilla browser.

June 8, 2007

Extended Quantum Field Theory and Cohomology, I

Posted by Urs Schreiber

A few minutes ago our little workshop on elliptic cohomology ended. All participants and speakers are on their way home.

I had the pleasure of helping organize this, attending it and giving a talk myself (on connections on String(n)\mathrm{String}(n)-2-bundles). While very gratifying, as a result I hardly found time for anything else. (I have to apologize to all those who are expecting comments to emails they sent me recently. I will try to provide these comments tomorrow or over the weekend.)

We had very few scheduled talks, the rest of the time being “discussion session”. The entire workshop was one big “russian style seminar”. And this was very fruitful, useful and effective. We shall do it this way again.

It turned out that several of the new ideas that our esteemed guests, Stephan Stolz and Peter Teichner, mentioned were closely related and had quite some overlap with things I was talking about in Toronto and some of the developments that have taken place since then: it’s all about how to understand various edges of the cube, which relates classical parallel nn-transport with the corresponding extended nn-dimensional quantum field theory and the relation of that to state-sum models like the FRS-formalism.

I am not entirely sure how much of the stuff which was discussed in our discussion sessions, much of which is unpublished and un-preprinted work, is supposed to be posted to a site like ours here. But what I shall do is talk about that stuff which overlapped with things I had thought about myself, and written about here before.

Reminder: Stolz-Teichner’s program of realizing Generalized Cohomology in terms of Quantum Field Theory

I once tried to write a summary of the ideas and concepts relevant here in Seminar on 2-Vector Bundles and Elliptic Cohomology, V. You can also find lots of references assembled there and in Seminar on 2-Vector Bundles and Elliptic Cohomology, I.

Some aspects of the more recent developments can be seen in the preprint

S. Stolz & P. Teichner
Super symmetric field theories and integral modular forms

It is (by now a decade-old) idea, dating back to G. Segal and later picked up greatly developed by Stephan Stolz and Peter Teichner, that generalized cohomology theories, which are functors H n:SpacesAbGrp H^n : \mathrm{Spaces} \to \mathrm{AbGrp} should have a “geometric realization” in terms of quantum field theories, i.e. in terms of representation categories of cobordisms “over spaces”.

So, roughly, if, for XX any space, dCob(X) d\mathrm{Cob}(X) denotes some notion of (ultimately dd-extended) category of nn-cobordisms Σ\Sigma which are equipped with (suitably well behaved) maps f:ΣX f: \Sigma \to X to the space XX, and if dVect d\mathrm{Vect} denotes some useful flavor of the (ultimately nn-)category of vector spaces, then the functor

XHom(dCob(X),dVect) X \mapsto \mathrm{Hom}(d\mathrm{Cob}(X),d\mathrm{Vect})_\sim

should yield a generalized cohomology theory, at least if some suitable bells and whistles are added to this.

Here the notation {}_\sim denotes identifying what are (by now at least) called concordance classes of field theories. This can roughly be thought of as identifying field theories which may be related by continuous deformations.

Quick plausibility argument.

As a quick heuristic argument why this is a reasonable program, it pays to look at the simple cases of degree 0-cohomology.

i) – deRham cohomology

The simplest example is ordinary deRham cohomology. H 0(X)H^0(X) here is the additive group of constant functions on XX.

On the other hand, 0-dimensional quantum field theory parameterized by XX is a 0-functor 0Cob(X)0Vect. 0\mathrm{Cob}(X) \to 0\mathrm{Vect} \,. Since 0Vect0\mathrm{Vect} is nothing but our ground field that’s nothing but a function on XX. Doing this carefully and dividing out concordance classes produces the collection of all constant functions on XX, indeed.

ii) – K-theory

The next simple case is KO-theory KO 0(X)KO^0(X). This is just the Grothendieck group of vector bundles on XX.

On the other hand, 1-dimensiona quantum field theories parameteried by XX are 1–functors 1Cob(X)Vect. 1\mathrm{Cob}(X) \to \mathrm{Vect} \,. These assign in oparticular a vector space to every point of XX. If done carefully and correctly, with all the right bells and whistles added, the collection of concordance classes of such functors is indeed the Grothendieck group of vector bundles over XX.

iii) – something like elliptic cohomology

This pattern continues. In degree 0 the cohomology theories we get from dd-dimensional extended quantum field theories this way essentially assign to each space XX the (Grothendieck group of) dd-vector bundles on XX.

It is another old conjecture, which we talk about every once in a while here, that something like elliptic cohomology should come out by replacing, in K-theory, vector bundles by 2-vector bundles.

This is one way to see why people expect that the space of (certain) 2-dimensional quantum field theories, “parameterized by a space XX”, knows about the elliptic cohomology of XX.

The major two bells-and-whistles that needs to be added to this setup are

a) smoothness: everything has to depend smoothly on all the data

b) supersymmetry: all spaces and cobordisms involved should be supermanifolds (hence the filed theories be “super quantum field theories”). Only this makes the cohomology theories obtained from assigning field theories to spaces nontrivial. Moreover, this is required to get the cohomology theories H nH^n for n>0n \gt 0.

Posted at June 8, 2007 1:26 PM UTC

TrackBack URL for this Entry:

0 Comments & 3 Trackbacks

Read the post Extended QFT and Cohomology II: Sections, States, Twists and Holography
Weblog: The n-Category Café
Excerpt: How transformations of extended d-dimensional quantum field theories are related to (d-1)-dimensional quantum field theories. How this is known either as twisting or as, in fact, holography.
Tracked: June 10, 2007 7:57 PM
Read the post Spectral Triples and Graph Field Theory
Weblog: The n-Category Café
Excerpt: Yan Soibelman is thinking about spectral stringy geometry.
Tracked: June 12, 2007 9:03 PM
Read the post Some Recreational thoughts on Super-Riemannian Cobordisms
Weblog: The n-Category Café
Excerpt: On super-Riemannian structure on cobordisms in terms of super-Poincaré connections.
Tracked: June 23, 2007 12:03 PM

Post a New Comment