Skip to the Main Content

Note:These pages make extensive use of the latest XHTML and CSS Standards. They ought to look great in any standards-compliant modern browser. Unfortunately, they will probably look horrible in older browsers, like Netscape 4.x and IE 4.x. Moreover, many posts use MathML, which is, currently only supported in Mozilla. My best suggestion (and you will thank me when surfing an ever-increasing number of sites on the web which have been crafted to use the new standards) is to upgrade to the latest version of your browser. If that's not possible, consider moving to the Standards-compliant and open-source Mozilla browser.

March 22, 2017

Functional Equations VII: The p-Norms

Posted by Tom Leinster

The pp-norms have a nice multiplicativity property:

(Ax,Ay,Az,Bx,By,Bz) p=(A,B) p(x,y,z) p \|(A x, A y, A z, B x, B y, B z)\|_p = \|(A, B)\|_p \, \|(x, y, z)\|_p

for all A,B,x,y,zA, B, x, y, z \in \mathbb{R} — and similarly, of course, for any numbers of arguments.

Guillaume Aubrun and Ion Nechita showed that this condition completely characterizes the pp-norms. In other words, any system of norms that’s multiplicative in this sense must be equal to p\|\cdot\|_p for some p[1,]p \in [1, \infty]. And the amazing thing is, to prove this, they used some nontrivial probability theory.

All this is explained in this week’s functional equations notes, which start on page 26 here.

Posted at March 22, 2017 2:12 AM UTC

TrackBack URL for this Entry:   https://golem.ph.utexas.edu/cgi-bin/MT-3.0/dxy-tb.fcgi/2951

0 Comments & 0 Trackbacks

Post a New Comment