Skip to the Main Content

Note:These pages make extensive use of the latest XHTML and CSS Standards. They ought to look great in any standards-compliant modern browser. Unfortunately, they will probably look horrible in older browsers, like Netscape 4.x and IE 4.x. Moreover, many posts use MathML, which is, currently only supported in Mozilla. My best suggestion (and you will thank me when surfing an ever-increasing number of sites on the web which have been crafted to use the new standards) is to upgrade to the latest version of your browser. If that's not possible, consider moving to the Standards-compliant and open-source Mozilla browser.

April 5, 2017

Functional Equations IX: Entropy on a Metric Space

Posted by Tom Leinster

Yesterday’s functional equations class can be described in two ways:

From a mathematical point of view, I gave a definition of the entropy of a probability distribution on a metric space. The high point was a newish maximum entropy theorem (joint work with Mark Meckes).

From a biological point of view, it was all about measuring the diversity of a community in a way that factors in the varying similarity between species. This approach is well-adapted to situations where there’s no clear division into “species” — for instance, communities of microbes. It also addresses a point made yesterday on this blog. All this is based on joint work with Christina Cobbold.

You can read the notes from yesterday’s class on pages 35–38 here.

Posted at April 5, 2017 12:38 PM UTC

TrackBack URL for this Entry:   https://golem.ph.utexas.edu/cgi-bin/MT-3.0/dxy-tb.fcgi/2957

0 Comments & 0 Trackbacks

Post a New Comment