Recent Posts by admin

Subscribe to Recent Posts by admin 4 posts found

posted 5 years ago
admin 4 posts

Forum: 396 – Topic: Welcome

When you choose “SVG-Edit → Save Image” in the SVG Edit window, it will save the SVG code back to your post. When you’re done with that, just “Save reply” and the SVG will be magically-rendered.

You can also create Tikzpictures:

\ begin{tikzpicture}[every tqft/.style={fill=orange,fill opacity=0.25},
tqft/every boundary component/.style={fill=yellow,fill opacity=.5},
tqft/every upper boundary component/.style={draw,thin,blue},
tqft/every lower boundary component/.style={draw,dashed,thin,blue}]
\usetikzlibrary{tqft}
\begin{scope}[tqft/every incoming boundary component/.style={fill=green, fill opacity= .25}]
\pic[tqft/pair of pants,draw,name=a,at={(0,0)}];
\pic[tqft/reverse pair of pants,draw,anchor=incoming boundary 2,name=e,at={(8,0)}];
\end{scope}
\begin{scope}[tqft/every outgoing boundary component/.style={draw,thin,blue,fill=yellow}]
\pic[tqft/reverse pair of pants,draw,anchor=incoming boundary 1,name=b,at=(a-outgoing boundary 2)];
\end{scope}
\begin{scope}[tqft/every incoming boundary component/.style={fill=green, fill opacity= .25}]
\pic[tqft/cylinder,draw,anchor=outgoing boundary 1,name=d,at=(b-incoming boundary 2)];
\end{scope}
\path (b-incoming boundary 2) ++(1.5,0) node[font=\Huge] {\(=\)};
\begin{scope}[tqft/every outgoing boundary component/.style={draw,thin,blue,fill=yellow}]
\pic[tqft/cylinder,draw,anchor=incoming boundary 1,name=c,at=(a-outgoing boundary 1)];
\pic[tqft/pair of pants,draw,anchor=incoming boundary 1,name=f,at=(e-outgoing boundary 1)];
\end{scope}
\end{tikzpicture}

produces

 
posted 5 years ago
admin 4 posts

edited 5 years ago

Forum: 396 – Topic: Welcome

Since we’re stuck here in quarantine, it would be a good idea to have a place to discuss the subject of this course online.

You need to sign up (by clicking on the link at the upper left), before you can post.

Equations are pretty easy to type. If you type

The $N$-point tree-level S-Matrix is
$$
  S_N(p_1,\dots,p_N) = \frac{8\pi i}{\alpha'} g_s^{2(N-2)}
    \int |z_{1 2}|^2 |z_{1 3}|^2 |z_{2 3}|^2\langle O_1(z_1,\overline{z}_1)
    \dots O_N(z_N,\overline{z}_N)\rangle d^2 z_4\dots d^2 z_N.
$$
where the $O_i$ are $h=\tilde{h}=1$ conformal primaries in the theory of 26 free scalars.

You get

The NN-point tree-level S-Matrix is

S N(p 1,,p N)=8πiαg s 2(N2)|z 12| 2|z 13| 2|z 23| 2O 1(z 1,z¯ 1)O N(z N,z¯ N)d 2z 4d 2z N. S_N(p_1,\dots,p_N) = \frac{8\pi i}{\alpha'} g_s^{2(N-2)} \int |z_{1 2}|^2 |z_{1 3}|^2 |z_{2 3}|^2\langle O_1(z_1,\overline{z}_1) \dots O_N(z_N,\overline{z}_N)\rangle d^2 z_4\dots d^2 z_N.

where the O iO_i are h=h˜=1h=\tilde{h}=1 conformal primaries in the theory of 26 free scalars.

and

The 4-point tachyon amplitude is
\[
   S_4(p_1,p_2,p_3,p_4) = \frac{8\pi i}{\alpha'} g_s^4 (2\pi)^{26}
     \delta^{(26)}\bigl(\sum p_i\bigr)2\pi \frac{\Gamma\bigl(-\tfrac{\alpha' s}{4}-1\bigr)
       \Gamma\bigl(-\tfrac{\alpha' t}{4}-1\bigr)\Gamma\bigl(-\tfrac{\alpha' u}{4}-1\bigr)
       }{\Gamma\bigl(\tfrac{\alpha' u}{4}+2\bigr)\Gamma\bigl(\tfrac{\alpha' t}{4}+2\bigr)
      \Gamma\bigl(\tfrac{\alpha' s}{4}+2\bigr)}
\]

produces

The 4-point tachyon amplitude is

(1)S 4(p 1,p 2,p 3,p 4)=8πiαg s 4(2π) 26δ (26)(p i)2πΓ(αs41)Γ(αt41)Γ(αu41)Γ(αu4+2)Γ(αt4+2)Γ(αs4+2) S_4(p_1,p_2,p_3,p_4) = \frac{8\pi i}{\alpha'} g_s^4 (2\pi)^{26} \delta^{(26)}\bigl(\sum p_i\bigr)2\pi \frac{\Gamma\bigl(-\tfrac{\alpha' s}{4}-1\bigr)\Gamma\bigl(-\tfrac{\alpha' t}{4}-1\bigr)\Gamma\bigl(-\tfrac{\alpha' u}{4}-1\bigr)}{\Gamma\bigl(\tfrac{\alpha' u}{4}+2\bigr)\Gamma\bigl(\tfrac{\alpha' t}{4}+2\bigr)\Gamma\bigl(\tfrac{\alpha' s}{4}+2\bigr)}

The full equation syntax may be a little daunting, but you probably won’t need much more than the above. For the rest, there’s Markdown.

Oh, and you can draw pictures, using the built-in drawing tool.

Layer 1 p 1 p_1 p 2 p_2 p 3 p_3 p 4 p_4 s 4 n α s\to \frac{4n}{\alpha'} p 1 p_1 p 2 p_2 p 3 p_3 p 4 p_4 G ( p 2 ) G(p^2) = d 26 p ( 2 π ) 26 ={\int\frac{d^{26}p}{(2\pi)^{26}}}

(Just click on the “Create SVG Graphic”) button.

 
posted 7 years ago
admin 4 posts

Forum: 373 – Topic: Welcome

Here’s a place to discuss Physics 373. You need to sign up (by clicking on the link at the upper left), before you can post.

Equations are pretty easy to type. If you type

The position, $x(t)$, is
$$
  x(t) = x_0 + v_0 t + \frac{1}{2} a t^2 .
$$
Eliminating $t$,
$$
    v^2(t) = \sqrt{ v_0^2 + 2 a ( x(t)  - x_0 ) }
$$

You get

The position, x(t)x(t), is

x(t)=x 0+v 0t+12at 2. x(t) = x_0 + v_0 t + \frac{1}{2} a t^2 .

Eliminating tt,

v 2(t)=v 0 2+2a(x(t)x 0) v^2(t) = \sqrt{ v_0^2 + 2 a ( x(t) - x_0 ) }

and

The angular momentum
\[
   \vec{L} = \vec{r} \times \vec{p}
\]

produces

The angular momentum

(1)L=r×p \vec{L} = \vec{r} \times \vec{p}

The full equation syntax may be a little daunting, but you probably won’t need much more than the above. For the rest, there’s Markdown.

Oh, and you can draw pictures, using the built-in drawing tool.

Layer 1 v 0 \vec{v}_0 x = 0 x=0 x = L x=L

(Just click on the “Create SVG Graphic”) button.

 
posted 8 years ago
admin 4 posts

edited 8 years ago

Forum: 362L – Topic: Fourier Transform Conventions

Here are our conventions for Fourier Transforms

In dd dimensions,

f(x) =d dp(2π) dg(p)e ipx g(p) =d dxf(x)e ipx \begin{aligned} f(\vec{x}) &= \displaystyle{\int\frac{ d^d\vec{p} }{ {(2\pi)}^d } g(\vec{p}) e^{i\vec{p}\cdot\vec{x}}}\\ g(\vec{p}) &= \displaystyle{\int d^d\vec{x} f(\vec{x}) e^{-i \vec{p}\cdot \vec{x}}} \end{aligned}

Normalization

d dx|f(x)| 2=1d dp(2π) d|g(p)| 2=1 \int d^d\vec{x} |f(\vec{x})|^2 = 1\quad \xLeftrightarrow{\qquad}\quad \int \frac{d^d\vec{p}}{{(2\pi)}^d} |g(\vec{p})|^2 = 1

The δ\delta-function is the Fourier-transform of the constant function, 11,

δ (d)(x) =d dp(2π) de ipx (2π) dδ (d)(p) =d dxe ipx \begin{split} \delta^{(d)}(\vec{x}) &= \displaystyle{\int \frac{d^d\vec{p}}{{(2\pi)}^d} e^{i\vec{p}\cdot\vec{x}}}\\ {(2\pi)}^d \delta^{(d)}(\vec{p}) &= \displaystyle{\int d^d\vec{x} e^{-i\vec{p}\cdot\vec{x}}} \end{split}