Skip to the Main Content

Note:These pages make extensive use of the latest XHTML and CSS Standards. They ought to look great in any standards-compliant modern browser. Unfortunately, they will probably look horrible in older browsers, like Netscape 4.x and IE 4.x. Moreover, many posts use MathML, which is, currently only supported in Mozilla. My best suggestion (and you will thank me when surfing an ever-increasing number of sites on the web which have been crafted to use the new standards) is to upgrade to the latest version of your browser. If that's not possible, consider moving to the Standards-compliant and open-source Mozilla browser.

September 14, 2008

My Dinner with Garrett

I had a college chum named David. David knew how to live well. He had a perennial twinkle in his eye, as he recounted his last escapade, or told you about his plans for his next. David finished his Senior Thesis a half year early and then spent most of the Spring Semester following the Grateful Dead around the country1.

I was reminded of David, when I sat down recently to lunch with Garrett Lisi. Garrett is one of those free spirits whom many of us (with comparatively humdrum lives) find charming to be around. Garrett seems to also have charmed the folks at FQXi. He received a grant in 2007 to develop a “Theory of Everything” which, as it turns out, has no chiral fermions (and could not possibly have any). Which is fair enough. Most ideas in physics don’t work out, and the only way to find out what works, and what doesn’t, is to try. So it makes total sense to fund the attempt. It’s not so clear to me that another grant, to “further develop the ‘E 8E_8 Theory’” makes sense, but luckily, I’m not on the FQXi selection committee. More remarkable, yet, was that he said he’s organizing a Workshop about his “theory”, and was trying to ascertain whether I would be worth inviting (I suspect the answer was “no”).

So I asked Lisi how he intended to further develop a “Theory of Everything” which, it was already known, could not contain chiral fermions. He said that he was still hoping to obtain chiral fermions (somehow or other) and that complex E 8E_8 was one possibility. Another possibility had something to do with abandoning the whole notion of Lie algebras, but I’m not sure what’s left of the “E 8E_8 Theory” then.

I should point out that, in many ways, E 8E_{8\mathbb{C}} is much simpler. Proving that a Lisi-esque theory, based on one of the noncompact real forms of E 8E_8, cannot contain chiral fermions requires either a somewhat ugly brute-force calculation, or a cleverer, but slightly indirect argument. In the case of complex E 8E_8, even a brute force calculation takes only about a page.

So, in the interest of reducing my carbon footprint (and at the cost of boring my readers) …

For a concise review of Lisi’s program, see here. The crucial point to emphasize is that, once one embeds Spin(3,1)GSpin(3,1)\hookrightarrow G where, for Lisi, GG is some noncompact form of E 8E_8, which generators of 𝔤\mathfrak{g} are “fermions”, and which are “bosons”, is dictated by the Spin-Statistics Theorem. Spinorial representations of Spin(3,1)SL(2,)Spin(3,1)\sim SL(2,\mathbb{C}) are fermions, tensorial representation are bosons, and which is which in entirely determined by the embedding. This distinction, between spinorial and tensorial representations of SL(2,)SL(2,\mathbb{C}), yields a 2\mathbb{Z}_2 grading on 𝔤\mathfrak{g}.

The noncompact real forms of E 8E_8 afforded some notion of economy — Lisi hoped to get the matter content of the Standard Model without too much extra junk. E 8E_{8\mathbb{C}}, being twice as large, will contain a disgusting amount of unphysical extra junk in the bosonic sector. Fortunately, proving that the fermion sector is unsatisfactory is much easier, and we can take a more direct approach and prove a more general result.

Consider any embedding SL(2,)E 8SL(2,\mathbb{C})\hookrightarrow E_{8\mathbb{C}}. This gives a 2\mathbb{Z}_2 grading on the Lie algebra. The converse is not true; not all 2\mathbb{Z}_2 grading come from an embedding of SL(2,)SL(2,\mathbb{C}). If we look at the list of symmetric spaces (in 1-1 correspondence with 2\mathbb{Z}_2 gradings), E 8/E 8 E 8/E 8(8) E 8/E 8(24) E 8/SO(16,) E 8/SL(2,)×E 7 \begin{gathered} E_{8\mathbb{C}}/E_8\\ E_{8\mathbb{C}}/E_{8(8)}\\ E_{8\mathbb{C}}/E_{8(-24)}\\ E_{8\mathbb{C}}/SO(16,\mathbb{C})\\ E_{8\mathbb{C}}/SL(2,\mathbb{C})\times E_{7\mathbb{C}} \end{gathered} the first three correspond to “outer” automorphisms (complex conjugation); the latter two, as we shall see presently2, arise from embeddings of SL(2,)SL(2,\mathbb{C}).

So let’s consider E 8/GE_{8\mathbb{C}}/G, for G=SO(16,),SL(2,)×E 7G= SO(16,\mathbb{C}),\, SL(2,\mathbb{C})\times E_{7\mathbb{C}}. Let HH be the commutant of SL(2,)SL(2,\mathbb{C}) in E 8E_{8\mathbb{C}} and let H cH_c be the maximal compact subgroup of HH. We’re not quite interested in any old embedding. When we decompose the adjoint of E 8E_{8\mathbb{C}} under SL(2,)SL(2,\mathbb{C}), the only spinorial representation we wish to appear are the 22 and the 2¯\overline{2}. This means we want SL(2,)×HGSL(2,\mathbb{C})\times H \hookrightarrow G to be maximal.

Up to isomorphism, then, there are two cases to consider.

  • G=SO(16,)G=SO(16,\mathbb{C}), H=SO(13,)H= SO(13,\mathbb{C}). Under E 8 SL(2,)×SO(13) 248 =(3+3¯,1)+(1,78)+(1,78)+(3,13)+(3¯,13)+(2,64)+(2¯,64) \begin{aligned} E_{8\mathbb{C}}&\supset SL(2,\mathbb{C})\times SO(13)\\ 248_{\mathbb{C}} &= (3+\overline{3},1) + (1,78) + (1,78) + (3,13) + (\overline{3},13) + {\color{red} (2,64) + (\overline{2},64)} \end{aligned}
  • G=SL(2,)×E 7G=SL(2,\mathbb{C})\times E_{7\mathbb{C}}, H=E 7H= E_{7\mathbb{C}}. Under E 8 SL(2,)×E 7 248 =(3+3¯,1)+(1,133)+(1,133)+(2,56)+(2¯,56) \begin{aligned} E_{8\mathbb{C}}&\supset SL(2,\mathbb{C})\times E_7\\ 248_{\mathbb{C}} &= (3+\overline{3},1) + (1,133) + (1,133) + {\color{red} (2,56) + (\overline{2},56)} \end{aligned}

In both cases, the 6464 and the 5656 are pseudoreal, and the fermion representation is nonchiral (for any gauge group which is, respectively, a subgroup of SO(13)SO(13) or of E 7E_7).

There … I feel so much greener already.

1 The thing about my friend David, though, was that he is also really, really, smart. Fun aside, he graduated Summa Cum Laude from Harvard.

2 A similar “brute force” approach to the noncompact real forms of E 8E_8 would be a bit more tedious to carry out, because one would have to study each of the symmetric spaces E 8(8)/SO(16) E 8(8)/SO(8,8) E 8(8)/SO *(16) E 8(8)/E 7(5)×SU(2) E 8(8)/E 7(7)×SL(2,) \begin{gathered} E_{8(8)}/SO(16)\\ E_{8(8)}/SO(8,8)\\ E_{8(8)}/SO^*(16)\\ E_{8(8)}/E_{7(-5)}\times SU(2)\\ E_{8(8)}/E_{7(7)}\times SL(2,\mathbb{R}) \end{gathered} and E 8(24)/SO(12,4) E 8(8)/SO *(16) E 8(24)/E 7×SU(2) E 8(24)/E 7(5)×SU(2) E 8(24)/E 7(25)×SL(2,) \begin{gathered} E_{8(-24)}/SO(12,4)\\ E_{8(8)}/SO^*(16)\\ E_{8(-24)}/E_7\times SU(2)\\ E_{8(-24)}/E_{7(-5)}\times SU(2)\\ E_{8(-24)}/E_{7(-25)}\times SL(2,\mathbb{R}) \end{gathered} individually. Fortunately, that’s unnecessary.

Above, SO *(2n)SO^*(2n) is the “additional” real form of D nD_n, in addition to the familiar SO(p,2np)SO(p,2n-p). It is defined as the subgroup of GL(2n,)GL(2n,\mathbb{C}) preserving p=1 nz py p\sum_{p=1}^n z_p y_p and p=1 n|z p| 2|y p| 2\sum_{p=1}^n |z_p|^2 - |y_p|^2. Its maximal compact subgroup is U(n)U(n), and for low dimensions, we have the isomorphisms so *(8) so(6,2) so *(6) su(3,1) so *(4) su(2)×sl(2,) \begin{aligned} so^*(8) &\simeq so(6,2)\\ so^*(6) &\simeq su(3,1)\\ so^*(4) &\simeq su(2) \times sl(2,\mathbb{R}) \end{aligned}

Posted by distler at September 14, 2008 11:39 PM

TrackBack URL for this Entry:

4 Comments & 3 Trackbacks

Re: My Dinner with Garrett

“Another possibility had something to do with abandoning the whole notion of Lie algebras, but I’m not sure what’s left of the “E 8 Theory” then.”

Did he say anything else about this?

Posted by: Daniel de Franša MTd2 on September 15, 2008 1:02 PM | Permalink | Reply to this
Read the post My Dinner with Garrett
Weblog: Musings
Excerpt: By popular demand, another post on this stuff.
Tracked: September 15, 2008 5:09 PM

Re: My Dinner with Garrett

Why does this article keeps going up in the Planet Musings page? I can’t see any update.

Posted by: Daniel de Franša MTd2 on September 23, 2008 7:33 AM | Permalink | Reply to this

Re: My Dinner with Garrett

Re: 0905.2658.
Very nice. Thank you.

Posted by: jjmc on May 19, 2009 10:58 PM | Permalink | Reply to this
Read the post Synchronicity
Weblog: Musings
Excerpt: Like Freddy Krueger ...
Tracked: June 19, 2009 12:07 AM
Read the post Crib Notes
Weblog: Musings
Excerpt: Oh no! NOT Lisi, again!
Tracked: June 27, 2010 9:19 PM

Re: My Dinner with Garrett

So E8 is a toy theory.

But it does actually predict a few new particles.
Some of which have already been suggested by more standard theories. So it seems to have some usefullness after all.

In fact with all the symmetries in E8 one should be able to fit anything into it.

What about the other toy theories such as the mysterious Weinstein one. Does it predict anything??

Posted by: s.vik on August 7, 2013 5:31 PM | Permalink | Reply to this

Post a New Comment